		COURSE CODE/		DBM2033 DISCRETE	
KEMENTERIA PENDIDIKAN MALAYSIA		COURSE NAME		MATHEMATICS	
		COURSEWORK ASSESSMENT		ASSIGNMENT	
		SESSION		DECEMBER 2018	
JABATAN MATEMATIK, SAINS DAN KOMPUTER				CLO1	
NAME		DURATION	60 MINS	CLO2	
REGISTRATION NO.				CLO3	20 MARKS
PROGRAMME/ SECTION		TOTAL MARKS		20 MARKS	

Instructions

- Answer ALL questions. Write your answers in the spaces provided.
- Show your working to get marks. You may use a non-programmable scientific calculator.

Question 1

CLO1, C3

T A B L E [4 marks]

The diagram shows five cards of different letters.

- (a) Find the number of possible arrangements, in a row, of all the cards.
- (b) Find the number of these arrangements with the letter E and A side by side.
- (a) Number of possible arrangements = ${}^5P_5 = 120$.
- (b) Number of arrangements = ${}^{4}P_{4}$ x ${}^{2}P_{2}$ = 48

Question 2

CLO1, C3 [4 marks]

A debating team consists of 7 students. The team will be chosen from a group of 9 boys and 6 girls. Find the number of teams that can be formed such that each team consists of

- (a) 4 girls
- (b) Not more than 3 boys
- (a) Number of teams that can be formed = ${}^{6}C_{4} \times {}^{9}C_{3} = 1260$
- (b) Number of teams that can be formed = ${}^{9}C_{1} \times {}^{6}C_{6} + {}^{9}C_{2} \times {}^{6}C_{5} + {}^{9}C_{3} \times {}^{6}C_{4} = 1485$

Question 3

CLO1, C2 [2 marks]

Find the number of four-digit numbers greater than 4000 which can be formed from the digits 2, 4, 6 and 9.

The number of four-digit numbers greater than 4000 that can be formed = ${}^{3}P_{1}$ x ${}^{3}P_{3}$ = 18

Question 4

CLO1, C3 [5 marks]

An examination question paper has four questions in Section A and three questions in Section B. A student has to answer five questions from the paper. Find the number of ways of selecting the questions if the student

- (a) Can answer any five questions from Section A and B.
- (b) Must answer three questions from Section A and two questions from Section B.
- (a) Number of ways answering 5 questions from 7 questions = ${}^{7}C_{5}$ = 21 (b) Number of ways answering 3 questions from Section A and 2 questions from Section B = ${}^{4}C_{3} \times {}^{3}C_{2} = 12$